ScaMaC  0.8.2
A Scalable Matrix Collection
List of matrices & benchmark suites

Table of Contents

Warning
Most matrix examples are still missing. Benchmark suites are currently included only for testing. Documentation remains rudimentary.

The complete list of Matrices and Benchmark suites of ScaMaC.

ScaMaC provides 15 matrices (with 95 parameters in total) and 1 benchmark suites.

Parameter format

Matrix parameters are listed in the respective Parameters section of each matrix, in the following tabular form (the header is only included here for explanation).

Type Name Description Default
int N number of row10
Option shuffle Diagonality {yes, no}

In this example, the matrix has two parameters: (i) the integer-valued N, with default value N=10, and (ii) an option shuffle that can be either "yes" or "no", with default value shuffle=no.

In addition to the standard types int and double, the following parameter types are used:

Seed random seed – see scamac_generator_set_rngseed() and scamac_generator_set_rngseed_str() for further information

Parameters can be subject to additional constraints, which are listed in the optional Constraints section of each matrix.

Type Constraint Description
[Error] N > 0 N should be positive
[Warning] shuffle != yes Shuffling is not recommended

Matrices

Alphabetical list

AndersonDiagonalRealExcitonFreeBosonChainFreeFermionChainHarmonicHubbardMembrane1OneFermionSpinChainXXZTightBindingTopInsTridiagonalTridiagonalComplexTridiagonalReal

List by groups

(::)
AndersonDiagonalRealExcitonFreeBosonChainFreeFermionChainHarmonicHubbardMembrane1OneFermionSpinChainXXZTightBindingTopInsTridiagonalTridiagonalComplexTridiagonalReal

Aliases


Anderson

Anderson model of localization in 1D, 2D, 3D

Properties
Real Symmetric
Parameters
int > 0Lxdimensions of cuboid along x-axis5
int > 0Lydimensions of cuboid along y-axis5
int > 0Lzdimensions of cuboid along z-axis5
doublethopping strength1.0
double ≥ 0ranpotrandom on-site potential [-ranpot, ranpot]0.0
Optionboundary_conditionsopen or periodic boundary conditions{open, periodic}
Seedseedrandom seed1
Optionsweepmode of traversal of cuboid{simple, backforth}
Constraints
[Input]Lx > 0[Parameter range] Lx > 0
[Input]Ly > 0[Parameter range] Ly > 0
[Input]Lz > 0[Parameter range] Lz > 0
[Input]ranpot >= 0[Parameter range] ranpot >= 0
Description
The Anderson model describes the motion of a quantum-mechanical particle in a disordered solid, which is represented as a cuboid of Lx*Ly*Lz lattice sites (this is also the matrix dimension). The kinetic energy is given in the tight-binding approximation (parameter t), the disorder is given by a random on-site potential (parameter ranpot). A 1D or 2D solid is obtained if, e.g., Ly=Lz =1 (for 1D) or Lz =1 (for 2D).
Matrix dimension
Matrix dimension is Lx*Ly*Lz
Benchmark suites
Simple

DiagonalReal

Diagonal (test) matrix

Properties
Real Symmetric
Parameters
int > 0nmatrix dimension100
doubledminminimal diagonal element-1.0
doubledmaxmaximal diagonal element1.0
Constraints
[Error]dmin < dmax
[Input]n > 0[Parameter range] n > 0
Description
A simple diagonal (test) matrix, with diagonal elements distributed uniformly in the interval [dmin, dmax] (including the end points).
Matrix dimension
dimension = n

Exciton

Exciton on a lattice

Properties
Complex Hermitian
Parameters
doublesospin orbit128.0
doubleexexchange666.0
doublemlhmass light hole0.16
doublemhhmass heavy hole3.1
doublememass electron0.99
doubleepsdielectric constant6.94
doublelceff. Coulomb length1.75
doublekxmomentum kx0.0
doublekymomentum ky0.0
doublekzmomentum kz0.0
doublealattice constant0.42696
int > 0Lcube length10
Optionsymmsymmetry{para, ortho}
Constraints
[Input]L > 0[Parameter range] L > 0
Description
This matrix describes an exciton, the bound electron+hole state in a semiconductor, within a microscopic lattice model. The default parameter values correspond to the cuprous oxide Cu2O, as investigated in Ref. [...].

FreeBosonChain

Free bosons on a chain

Properties
Real Symmetric
Parameters
doublethopping strength1.0
int > 0n_speciesnumber of bosonic species1
int > 0n_sitesnumber of sites10
int > 0n_bosonsnumber of bosons per species5
Optionbcopen (false) or periodic (true) boundary conditions{open, periodic}
Constraints
[Input]n_species > 0[Parameter range] n_species > 0
[Input]n_sites > 0[Parameter range] n_sites > 0
[Input]n_bosons > 0[Parameter range] n_bosons > 0
Description
This matrix is a simple example for a non-interacting many-particle quantum system, where bosons move on a chain with n_sites sites and nearest-neighbour hopping (parameter t). The bosons form n_species different species, with n_bosons each.
Matrix dimension
The matrix dimension grows roughly exponentially as a function of n_bosons and n_sites.

FreeFermionChain

Free fermions on a chain

Properties
Real Symmetric
Parameters
doublethopping strength1.0
int > 0n_speciesnumber of fermionic species1
int > 0n_sitesnumber of sites10
int > 0n_fermionsnumber of fermions per species5
Optionbcopen (false) or periodic (true) boundary conditions{open, periodic}
Constraints
[Error]n_fermions <= n_sites
[Input]n_species > 0[Parameter range] n_species > 0
[Input]n_sites > 0[Parameter range] n_sites > 0
[Input]n_fermions > 0[Parameter range] n_fermions > 0
Description
This matrix is a simple example for a non-interacting many-particle quantum system, where fermions move on a chain with n_sites sites and nearest-neighbour hopping (parameter t). The fermions form n_species different species, with n_fermions each. As a consequence of the Pauli exclusion principle for fermions, there cannot be more fermions than sites.
Matrix dimension
The matrix dimension grows roughly exponentially as a function of n_fermions and n_sites.

Harmonic

Quantum harmonic oscillator

Properties
Real Symmetric
Parameters
doubleomegaoscillator frequency1.0
doublelambdaoscillator shift0.0
int > 0n_bosnumber of bosons100
Constraints
[Input]n_bos > 0[Parameter range] n_bos > 0
Description
The quantum harmonic oscillator in occupation number representation. The resulting matrix is tridiagonal.
Matrix dimension
dimension = n_bos

Hubbard

The 1D Hubbard model from quantum physics

Properties
Real Symmetric
Parameters
doublethopping strength1.0
doubleUHubbard interaction0.0
int > 0n_sitesnumber of sites10
int > 0n_fermionsnumber of fermions per spin orientation5
Optionboundary_conditionsopen or periodic boundary conditions{open, periodic}
doubleranpotrandom on-site potential [-ranpot, ranpot]0.0
Seedseedrandom seed1
Constraints
[Error]n_fermions <= n_sites
[Warning]n_sites <= 1000very large n_sites (>1000)
[Input]n_sites > 0[Parameter range] n_sites > 0
[Input]n_fermions > 0[Parameter range] n_fermions > 0
Description
The Hubbard model is a prime example of a strongly correlated interacting many-particle quantum system. This matrix implements the 1D Hubbard model, where n_fermions electrons with "spin up" or "spin down" move on a chain with n_sites. The kinetic energy is controlled by the parameter t, the Coulomb interaction (repulsive for U>0, attractive for U<0) by the parameter U. For U=0, one obtains a special case of the FreeFermionChain.
Matrix dimension
The matrix dimension is \binomial(n_sites,n_up)^2.
Benchmark suites
Simple

Membrane1

Damped vibrations of a thin rectangular membrane (friction type 1)

Properties
Real General
Parameters
double > 0lxlength side x1.0
double > 0lylength side y1.0
doublerhomass density1.0
doublecwavewave velocity1.0
doublesigmafriction strength0.1
int > 0nxdiscretization points along side x10
int > 0nydiscretization points along side y10
Optionpackchoose small (=tight) or large (=loose) 2x2 blocks{tight, loose}
Constraints
[Input]lx > 0[Parameter range] lx > 0
[Input]ly > 0[Parameter range] ly > 0
[Input]nx > 0[Parameter range] nx > 0
[Input]ny > 0[Parameter range] ny > 0

OneFermion

one fermion on a chain

Properties
Real Symmetric
Parameters
doublethopping strength1.0
intn_sitesnumber of sites10
Optionbcboundary conditions{open, periodic}
Constraints
[Error]n_sites > 0
[Warning]n_sites <= 1000n_sites is very large

SpinChainXXZ

One-dimensional XXZ model

Properties
Real Symmetric
Parameters
doubleJxyJ_x=J_y1.0
doubleJzJ_z1.0
doubleBzB_z0.0
int > 0n_sitesnumber of sites10
int > 0n_upnumber of up spins5
Optionboundary_conditionsboundary conditions{open, periodic}
Constraints
[Error]n_up <= n_sites
[Input]n_sites > 0[Parameter range] n_sites > 0
[Input]n_up > 0[Parameter range] n_up > 0
Description
Spin chains are examples of strongly correlated interacting many-particle quantum systems. This example implements the XXZ-model, where n_sites spin are arranged as a 1D chain. Neighboring spins interact via magnetic (i.e., Heisenberg) exchange. The interaction strenght is controlled by parameters Jxy (in the xy-plane) and Jz (in the z-direction, perpendicular to the plane). For Jxy=Jz, the interaction is isotropic. Also included is a magnetic field in the z-direction (parameter Bz). The number of "up" spins is fixed by the parameter n_up.
Matrix dimension
The matrix dimension is \binomial(n_sites, n_up).

TightBinding

simple 1D (chain), 2D (square), or 3D (cubic) tight-binding model

Properties
Real Symmetric
Parameters
int > 0Lxdimensions of cuboid (x-axis)5
int > 0Lydimensions of cuboid (y-axis)5
int > 0Lzdimensions of cuboid (z-axis)5
doublethopping strength1.0
Optionboundary_conditionsboundary conditions{open, periodic}
int > 0mxsubdivision of cuboid (x-axis)1
int > 0mysubdivision of cuboid (y-axis)1
int > 0mzsubdivision of cuboid (z-axis)1
Constraints
[Input]Lx > 0[Parameter range] Lx > 0
[Input]Ly > 0[Parameter range] Ly > 0
[Input]Lz > 0[Parameter range] Lz > 0
[Input]mx > 0[Parameter range] mx > 0
[Input]my > 0[Parameter range] my > 0
[Input]mz > 0[Parameter range] mz > 0

TopIns

3D topological insulator

Properties
Complex Hermitian
Parameters
int > 0Lxdimensions of cuboid (x-axis)5
int > 0Lydimensions of cuboid (y-axis)5
int > 0Lzdimensions of cuboid (z-axis)5
doublethopping strength1.0
doublemtuning parameter0.0
doubleD1symmetry breaking (IS+TRS)0.0
doubleD2symmetry breaking (IS)0.0
doubleranpotrandom on-site potential [-ranpot, ranpot]0.0
Optionboundary_conditionsboundary conditions{open, periodic}
Seedseedrandom seed1
int > 0mxsubdivision of cuboid (x-axis)1
int > 0mysubdivision of cuboid (y-axis)1
int > 0mzsubdivision of cuboid (z-axis)1
Constraints
[Input]Lx > 0[Parameter range] Lx > 0
[Input]Ly > 0[Parameter range] Ly > 0
[Input]Lz > 0[Parameter range] Lz > 0
[Input]mx > 0[Parameter range] mx > 0
[Input]my > 0[Parameter range] my > 0
[Input]mz > 0[Parameter range] mz > 0

Tridiagonal

Tridiagonal matrix

Properties
Complex Hermitian
Parameters
idx > 0nmatrix dimension100
doublediagdiagonal element0.0
doubleoffdiagoff-diagonal element1.0
doublephiphase for off-diagonal element0.0
Constraints
[Input]n > 0[Parameter range] n > 0

TridiagonalComplex

Non-symmetric tridiagonal matrix

Properties
Complex General
Parameters
idx > 0nmatrix dimension100
doublediag_rediagonal element0.0
doublediag_imdiagonal element0.0
doublesubdiagoff-diagonal element (below diagonal)1.0
doublesupdiagoff-diagonal element (above diagonal)1.0
Constraints
[Input]n > 0[Parameter range] n > 0

TridiagonalReal

Non-symmetric tridiagonal matrix

Properties
Real General
Parameters
idx > 0nmatrix dimension100
doublediagdiagonal element0.0
doublesubdiagoff-diagonal element (below diagonal)1.0
doublesupdiagoff-diagonal element (above diagonal)1.0
Constraints
[Input]n > 0[Parameter range] n > 0

Benchmark suites

Simple

Simple

Simple suite

Description
Presently, in ScaMaC v0.8.2, the benchmark suite is included for testing purposes only.
List of matrices (BmSimple-m-x)

BmSimple-1-x = Hubbard

The Hubbard model is included because of its ubiquity.

BmSimple-2-x = Anderson